
Understanding and Managing Custom Services with systemd

systemd is the standard service and system manager for most Linux distributions, handling
system startup, process management, and service control. If you're looking to automate or manage
custom scripts or programs as services, systemd makes it easy to create and manage these
services. Here’s a comprehensive guide on creating, enabling, and managing custom services.

1. Create service file: /etc/systemd/system/my_custom_service.service
2. Reload systemd configuration: sudo systemctl daemon-reload
3. Enable service at startup: sudo systemctl enable my_custom_service.service
4. Start the service: sudo systemctl start my_custom_service.service

To create a custom service, start by creating a service file. This file will contain essential
configurations and is typically stored in /etc/systemd/system/ . Here’s an example of a service file
structure for running a custom script as a service:

[Unit]: This section contains metadata about the service, such as its description and
dependencies.

systemd: Creating a service

CHEATSHEET

DETAILS

Creating a Custom systemd Service

[Unit]

Description=My Custom Service

After=network.target

[Service]

ExecStart=/usr/bin/my_script.sh

Type=simple

[Install]

WantedBy=multi-user.target

Breakdown of Service File Sections

Description: Provides a brief overview of the service's purpose.
After: Specifies dependencies and ensures that my_script.sh runs only after the
network is available.

[Service]: Defines how the service should be executed.
ExecStart: Specifies the path to the executable or script. In this example, the service
runs /usr/bin/my_script.sh .
Type: The service type determines how systemd manages the process. Common
types include:

simple : Default type, used when the process doesn't fork or exit quickly.
forking : Used if the process forks into the background.

[Install]: Determines how and when the service should be launched.
WantedBy: Specifies which target (runlevel) the service should start under. Setting
this to multi-user.target means it will start when the system is in a multi-user, non-
graphical environment.

Once you've created the service file, you'll need to use systemctl , the command-line tool for
managing systemd services, to control it.

1. Load the Service Configuration
To ensure systemd reads your new service file, run the following command:

sudo systemctl daemon-reload

2. Enable the Service at Boot
This makes the service start automatically when the system boots:

sudo systemctl enable my_custom_service.service

3. Start the Service
Once enabled, start the service manually for immediate execution:

sudo systemctl start my_custom_service.service

Check Status: See if the service is running and view recent log entries.
sudo systemctl status my_custom_service.service

Managing the Service with systemctl

Steps to Enable and Start the Service

Common systemctl Commands

Stop the Service: Stop the service manually.
sudo systemctl stop my_custom_service.service

Restart the Service: Restart the service to apply new changes.
sudo systemctl restart my_custom_service.service

Disable the Service: Prevent the service from starting automatically at boot.
sudo systemctl disable my_custom_service.service

With these commands and an understanding of how to create a custom service file, you can
effectively manage processes and tasks on your Linux system, enabling better automation and
control.

Happy Me! ��

Revision #1
Created 31 October 2024 00:12:31 by Tiffanie BOREUX
Updated 31 October 2024 00:26:31 by Tiffanie BOREUX

